Smart Appliances?
- Focal point study is Demand Response
- Smart Appliance = appliance that offers the flexibility in its electricity profile as a service
- What are the interactions with the outside world, from the point of view of the appliance

Flexibility uses
- Congestion Management
- Balance
- Flexibility

Target is always balancing and/or grid congestion management, flex buyers are always TSO, BRP or DSO

BRP: Balancing Responsible Party
TSO: Transmission System Operator
DSO: Distribution System Operator
But this translates to a high number of technical objectives

- Frequency containment, automatic frequency restoration, manual frequency restoration, grid congestion management, wholesale market, intra-day balancing, day ahead portfolio optimization, reactive power ancillary services, PV grid injection minimization, etc.

- What is today’s highest value application of residential flexibility?
- What is tomorrow’s highest value application of residential flexibility?

- Smart appliances should support as many as possible

Control architecture

- 3 approaches: (= generalized use cases)
 - External control & external objectives
 - Internal control & external objectives
 - Internal control & internal objectives

External control & external objectives

- Use case example: use the flexibility of smart appliances to maintain the intraday balance between electricity production and consumption
- New/ altered BC (Business Case) ➔ no impact on appliances

Internal control & external objectives

- Use case example: smart appliances respond directly to day ahead energy market prices
- Control logic required in appliance for all supported BC’s
- Mainly open loop control cases
- New/altered BC ➔ Impact on appliances ➔ Impact on interfaces
- Day ahead energy market prices ➔ Start or delay Operation i.f.o. the prices
Internal control & internal objectives

- Use case example: automated frequency restoration based on local frequency measurements
- No communications required
- Control logic required in appliance for all supported BC’s
- Only open loop control, but very fast
- New/altered BC
 - Impact on appliances
 - Potentially hardware impact

Control Objective

Control Logic

Frequency measured

Increase/decrease power i.f.o. frequency

In house communications are difficult

- No plug&play solution that works for the majority of the households
- No dominant technology
 - (power line, wireless P2P, wireless meshed, wired, …)
- No technology may be excluded

Cloud vs. Central Energy Manager

Central Energy Manager
- Easier to manage/guarantee security and privacy
- Open and interoperable interfaces required on the appliance

Cloud
- No extra hardware
- Each appliance must be able to establish extra-house communication
- Open and interoperable interfaces required at the servers

Contents

- Control architectures
- Communication architectures
- Conclusions
A common data model

A shared data model is crucial.

All models require continuous data translation

Conclusion

» Control architectures
 » 3 models, none dominant
 » Large impact on smart appliance functionality and data model
 » Can/should this be limited?
 » Today’s initiatives often partly support both internal and external control

» Communication architectures
 » 2 models, none dominant
 » Can co-exist and impact on appliance can be limited
 » Provided a common data model is used

» Many data model/ontology initiatives:
 SAREF, EEBus, SEP2, OpenADR 2.0, CIM, ...

End consumer business models

» A wide variety of business models for the end consumer are possible
 » Variable pricing
 » Capacity/activation fee
 » PV injection minimization
 » Energy services bundle offer
 » Rebate or subsidy scheme at purchase
 » Obligatory

» Smart appliances should accommodate as many as possible
» Limited public available information
Variable pricing

- Vattenfall/Sweden
 - Retail contracts with Nordic power exchange based hourly prices
- France Option Tempo
 - Blue, white and red days
- Eneco SlimLaden
 - Smart charging of Tesla’s based on energy market prices

Variable pricing – research project experience

- Linear:
 - 6 fixed time blocks per day with variable prices set per day
 - Variable pricing with automated control works well, but non-controlled (peak) loads represent financial risk
 - Too complex for manual demand response (response fatigue)
- PowerMatching city Hoogkerk
 - Automated control preferred over manual control
 - No response fatigue for manual control, as fixed price patterns render price consultation redundant

Capacity/activation fee

- Traditionally used for balancing reserves
- Typically used for industrial demand response based reserves
 - R3-DP and SDR products of Ella in Belgium
 - FCDM and STOR of National Grid in the UK.
- Load management program for airco’s in the US (FPL, BGE, ...)
- Research project experience: Linear
 - Capacity fee was well received by users: simple, no financial risk

Other examples

- PV injection minimization
 - Feed in tariffs for PV production in Germany and Belgium
- Free thermostat or thermostat rebate in exchange for airco control
 (Austin Energy and CPS Energy in Texas, US)
Call for information

» Important that no revenue model is excluded
» Limited public information

» What are your experiences on business and remuneration models for smart appliances?